Mast cell chymase in keloid induces profibrotic response via transforming growth factor-β1/Smad activation in keloid fibroblasts.

نویسندگان

  • Xianglin Dong
  • Chuanshan Zhang
  • Shaolin Ma
  • Hao Wen
چکیده

This study was to examine whether mast cell chymase exists in human keloids and exerts its profibrotic effect via transforming growth factor-β1/Smad signaling pathway. The number of mast cells and the expression levels of chymase in keloids and normal skin were examined by immunohistochemistry assays. The mRNA expression and activity changes of chymase in keloids and normal skin were determined by real-time quantitative PCR and radioimmunoassay. After keloid fibroblasts were treated with different concentrations of chymase (0, 15, 30, 60, and 120 ng/mL) for various time periods, the proliferation of keloid fibroblasts, collagen synthesis, mRNA and protein expression of TGF-β1, and the protein expression of phosphorylated Smad2/3, Smad2/3 and Smad7 were investigated using MTT assay, ELISA and Western blotting. Mast cells and chymase exist in keloid. Gene expression and activity of mast cell chymase in keloid are significantly higher than those in normal skin. Chymase promotes keloid fibroblast proliferation and collagen synthesis by activating TGF-β1. The activation of Smad protein signaling pathway by chymase is related to the elevated P-Smad protein expression in keloid fibroblasts. Our data demonstrated that mast cell chymase plays an important role in keloid formation through TGF-β1/Smad signaling pathway.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of chymase in the local renin-angiotensin system in keloids: inhibition of chymase may be an effective therapeutic approach to treat keloids

BACKGROUND Histologically, keloids contain excess fibroblasts and an overabundance of dermal collagen. Recently, it was reported that chymase induced a profibrotic response via transforming growth factor-β1 (TGF-β1)/Smad activation in keloid fibroblasts (KFs). However, the role of chymase in the local renin-angiotensin system (RAS) in keloids has not been elucidated. This study aims to determin...

متن کامل

Asiatic Acid Isolated From Centella Asiatica Inhibits TGF-β1-induced Collagen Expression in Human Keloid Fibroblasts via PPAR-γ Activation

Keloids are fibroproliferative disorders characterized by exuberant extracellular matrix deposition and transforming growth factor (TGF)-β/Smad pathway plays a pivotal role in keloid pathogenesis. Centella asiatica extract has been applied in scar management for ages. As one of its major components, asiatic acid (AA) has been recently reported to inhibit liver fibrosis by blocking TGF-β/Smad pa...

متن کامل

Overexpression of RACK1 inhibits collagen synthesis in keloid fibroblasts via inhibition of transforming growth factor-β1/Smad signaling pathway.

Keloids are benign skin tumors characterized by collagen accumulation and hyperproliferation of fibroblasts. The receptor for activated C-kinase 1 (RACK1) was involved in liver fibrosis. However, the role of RACK1 in dermal fibrosis keloids is still unclear. Therefore, in this study, we investigated the effects of RACK1 on keloid fibroblasts (KFs) and transforming growth factor-β1 (TGF-β1)-indu...

متن کامل

High concentrations of mast cell chymase facilitate the transduction of the transforming growth factor-β1/Smads signaling pathway in skin fibroblasts

The aim of the present study was to investigate the effect of different concentrations of mast cell chymase on the transforming growth factor (TGF)-β1/Smad signaling pathway in skin fibroblasts. Cultured skin fibroblasts were treated with various concentrations of chymase for different time periods. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was used to assess the rate...

متن کامل

Hypoxia-inducible factor-1α activates transforming growth factor-β1/Smad signaling and increases collagen deposition in dermal fibroblasts

Hypoxia of local tissue occurs during the scar formation; however, the degree of ischemia and hypoxia in the central areas of keloids is more serious than those in normal scars. Hypoxia-induced factor (HIF), is one of the main cellular responses to hypoxia, allowing cells to adapt to low-oxygen conditions. We investigated the correlation among hypoxia, transforming growth factor-β1/Smad signali...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • International journal of clinical and experimental pathology

دوره 7 7  شماره 

صفحات  -

تاریخ انتشار 2014